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Abstract

A second—order perturbation theory is developed for the response of

slightly damped gyroscopic systems. The solution is based on the eigen—

solution for undamped gyroscopic systems and is expressed in terms of

real quantities alone.

1. Introduction

A general theory exists for the response of linear systems to

arbitrary time—dependent excitations (Ref. 1). The solution is based on

the so—called transition matrix. For high—order systems, the determination

of the transition matrix is time—consuming, so that the method is not

particularly attractive computationally . The situation is considerab ly

better for special classes of systems, as shown in the following.

Undamped nongyroscopic systems are characterized by symmetric mass

and stiffness matrices. The eigeneolution for such systems consists of

>— real eigenvalues and eigenvectors, where the latter are orthogonal with
CD
(_) respect to the mass matrix. Taking advantage of these properties, the

Li_i response can be obtained without much difficulty (Ref. 1). If viscous

L&_. damping is present, than the eigensolution ceases to be real, even when

C I~
) the damping matrix is symmetric. Both the eigensolution and the response

ic~,~~ ~ 
are significantly more difficult to obtain than for undamped ems
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(Ref . 1). A method for obtaining the eigeneolution and response of un—

damped gyroscopic systems has been developed recently by the first author

(Refa. 2 and 3). Taking advantage of the fact that the gyroscopic matrix

is skew symmetric, the elgenvalue problem can be transformed into one in

terms of symmetric matrices alone.

The problem of d~’mped gyroscopic systems is considerably more compli-

cated than those corresponding to the three special cases mentioned above.

The sum of the damping matrix and the gyroscopic matrix is an arbitrary

matrix. ~Ience, any advantage resulting from the syimnetry or skew symmetry

of coefficient matrices is lost, so that one must return to the general

theory.

This paper is concerned with gyroscopic systems with small damping.

In this case, damping can be regarded as a perturbation to the undamped

gyroscopic system. Indeed, a second—order perturbation theory for the

response of slightly damped gyroscopic systems is developed in this paper.

The solution is based on the eigensolution for undamped gyroscopic

systems and is expressed in terms of real quantities alone. The theory

contains the case of slightly damped nongyroscopic systems (Ref. 4) as a

special case.

2. Response of General Damped Gyroscopic Systems

The equations of motion of a general damped gyroscopic system can

be written in the matrix form (Ref. 1)

M~j (t)  + (G + C)q(t) + Kq(t) 9(t) (1)
Sectloii 

~j

where M, C and K are n X n real symmetric matrices, C is an n x n real I]

skew symmetric matrix, q(t) is the n—dimensional configuration vector --______
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and g(t) is the associated n—dimensional force vector. We shall consider

the case in which M and IC are positive definite.

The solution of Eq. (1) can be most conveniently derived by trans-

forming the equation to state form. To this end, we introduce the 2n—

dimensional state vector and excitation vector

x(t) — [4
T(t) qT(t)]T (2a)

X(t) — (QT(t) : ØT]T (2b)

as well as the 2n X 2n matrices

— [~4.2J (3a)

- [9~j_c_
~

_
~J (3b)

where M* is real symmetric and positive definite and K* is real but

arbitrary. Definitions (2) and (3)  permit us to rewrite Eq. (1) in the

state form

M*i(t) + K*z(t) X(t) (4)

Before discussing the solution of Eq. (4), we wish to reduce it to

standard form, in which the coefficient matrix multiplying * is simply the

identity matrix. Ordinarily, this would mean premultiplication of Eq.

(4) by (M*)~~. Owing to the special nature of the problem, however, there

exists a coaputationally superior procedure. Indeed , because the matrix

M* is real symmetric and positive definite, we can use the Cholesky

decomposition (Ref. 1) and write

M *_ L L T (5)

where L is a lower triangular matrix. Then , introducing the linear

3
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transformation

LTx(t) — u(t) , x(t ) — L
_T

~(t) (6)

where CT 
— (LT) l 

— (L~~)T , Eq. (4) can be reduced to the standard

form

— Au(t) + U(t ) (7)

in which

A — - C~ *CT (8)

is a real nonsymmetric matrix and

11(t) — L 1X(t) (9)

is a real vector.

The solution of Eq. (7) can be written in the general form involving

the convolution integral (Ref . 1)

t
u(t) — $(t)u(O) + f •(t , r )U (r )dT (10)

0

where u(O) is the initial vector and

$(t , r) e~~
t_t) 

(11)

is known as the transition matrix.

The solution of Eq. (7) can also be obtained by modal analysis,

which amounts to the determination of the Jordan form for A. To this end,

let us consider the eigenvalue problem

Au~ — , i 1,2 ,...,2n (12)

where and are the eigenvalues and eigenvectors of A. For simplicity ,

we shall asst~e that all the ei~envalues are distinct , so that the Jordan

4
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matrix is diagonal

A — diag (A~ ] (13)

The eigenvectors i1
1 

are known as the right eigenvectors of A and can be

arranged in the square matrix

U — 

~~l ~2 ~2n 1 (14)

The adjoint eigenvalue problem is

y~A A~v~ , 11,2 ,...,2n (15)

and has the same eigenvalues A1 as before, as well as the left eigenvectors

v1 (1—l ,2 ,...,2n) . The left eigenvectors can be arranged in the square

matrix

V — 

~~i 
!~ 

... 
~2n~ 

(16) V
The right eigenvectors are orthogonal to the left eigenvectors , a property

known as biorthogonality. The eigenvectors can be normalized so as to

satisfy

vTu — uTv — 21 (17)

where I is the identity matrix , in which case the Jordan matrix can be

expressed as

VTAU — 2A (18)

The reason for the factor 2 on the right side of Eqs. (17) and (18) will

become evident later . V

Because the vectors on the one hand and the vectors on the

other hand are linearly independent , either set of vectors can be taken

as a basis for a linear vector space L2
~ , which implies that the solution

of Eq. (7) can be represented as a linear combination of the eigenvectors

5
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or of the eigenvectors V
1
. Uáing the vectors as a basis , we can

V 

write
V 2n

• u(t) — E ujzi(t) — Uz (t) (19)
i—i

where z(t) is a 2n—vector with components z1(t) . Introducing Eq. (19) into

Eq. (7) , premultiplying the result by VT and considering Eqs . (17—18) , we

obtain

~(t ) — Az(t) + Z(t) (20)

where

z(t) — .~~~ v~u~~ (21)

Equation (20) represents a set of 2n independent equations having the V

• solutions

z1(t) 
— e?1t zj (O) + f

~ 
e 1t_T) Z1(t)dt , i”l,2 ,...,Zn (22)

or in vector form

V V 

z(t) — ehtz(O) + f e t_ T
~~ (.r)dt (23)

where we note that e~
t is a diagonal matrix. The formal solution is

cornpleted by first introducing Eq. (23) into Eq. (19) and then intro-

ducing the result into the second of Eqs. (6).

The interest lies in systems with a large number of degrees of

freedom, measuring in the hundreds or more. For such systems , the proce-

dures described above must receive closer scrutiny.

Solution (10) involves an integral containing the transition matrix

•, Eq. (ii) . To generate the matrix •, it is necessary to expand a power

series in A. Then, the solution is obtained by performing the indicated

6

V ~~~~~~~~~ -~~~~ ~~~~~~~~~~~~~~~~~~~~~~ V~~~• ~~~~~~~~~~~~~~~~~~~~ ~~~~~~V 
~~~~~V



-i

• integration. For large—order systems, the process can be tim~~consuming.

In addition , computer roundoff is likely to introduce computational

errors. The other procedure, namely, that based on modal analysis , is

also not very attractive for high—order systems. Indeed, the procedure

• requires the solution of the algebraic eigenvalue problem for the matrix

A. But A, although real , is not symmetric. Hence, in general the eigen—

values and eigenvectors are likely to be complex quantities, as opposed

to real quantities for real syssnetric matrices. Moreover , computational

algorithms for the eigensolution of arbitrary matrices are not nearly as

efficient as those for real symmetric matrices. Hence, for high—order

matrices , serious numerical difficulties can be encountered, and a dif-

ferent approach appears highly desirable. V

3. Undamped Gyroscopic Systems

We observe from Eqs. (3) and (8) that in the absence of damping,

C 0, the matrix A becomes skew symmetric. In this case , the eigenvalues

occur in pure imaginary complex conjugate pairs and the eigenvectors also

occur in complex conjugate pairs , or

Aui 
A~u~ — iw

~u~ 
, i’l,2 ,.. . ,n (24a)

Au~ — — —iwju .~ i],2,...,n (24b)

where is the ith natural frequency of oscillation. Because AT —A,

the left eigenvectors of A are simply the complex conjugates 
~~~~~

. Indeed ,

if we write first

• v~A S A~v~ — iw~v~ , i 1,2 ,...,n (25)

and then transpose the equations , we obtain

A!1 — — Ajyj  — —iw1y1 
, i~1,2,... ,n (26)

~~~~~~~ V~~~~~~~~~~~ V • V~~ • V~~~~~~~~~~ V~~~~~~~~~~~ . ~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~
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so that , comparing Eqs. (24b) and (26) , we conclude that

vs — u , i 1,2 ,... ,n (27)
J. 1.

Hence , the 2n eigensolutions of A and AT can be written in the special

form of complex conjugate pairings , or

i’1,2 ,...,n (28)

— 
‘ 

, v~ —

The above implies that it is not really necessary to solve the elgenva].ue

problem for AT to obtain the left eigenvectors v1.

Next , let us premultiply Eqs . (24) by —A and write

—A2ui — —iw1Au1 w~u1 , 11,2 ,... ,n 
- 

(29a)

V 
—A2u1 — iw~Au1 — , i”1,2 ,... ,n (29b)

f rom which we conclude that the matrix —A2 admits the same eigenvalue

for both eigenvectors u~ and u1. Hence, the 2n eigenvalues of —A2 consist

of n elgenvalues with double multiplicity. All the eigenvalues of

—A2 are real and positive, which is consistent with the fact that —A2 is

not only real and syimnetric but also positive definite. But a real sym—

metric matrix is known to possess only real eigeusolutions , so that it is

not necessary to work with complex eigenvectors. Indeed , because any

linear combination of the eig.nvectors U
1 
and is also an elgenvector of

—A belonging to w~ , we can simply choose the two real eigenvectors

+ ~~ 
+ ) — Re — , — (u~ — 

~~
) — Im — (30)

In conclusion, the eigenvalue problem for the undamped gyroscopic 
V

system, Eqs. (24) , has been reduced to the eigenvalue problem for the

real symmetric positiv, definite matrix —A2 . The latter problem has

8
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1 .
multiplicity two , with the real eigenvectors 

~~ 
and z~ belonging to the

2same eigatvalue w1 (il ,2,...,n). These are essentially the results ob-

tained in Ref. 2.

The reduction of the eigenvalue problem for an undamped gyroscopic

V system to that of a real symmetric positive definite matrix makes possible

the use of a large variety of conaputationally efficient algorithms for

the solution of the latter problem. The question remains , however ,

whether there is an efficient way of producing the response of a damped

gyroscopic system. For arbitrarily large damping, the answer must be

negative, as the addition of the matrix C to G destroys the skew symmetry

of A and the symmetry and positive definiteness of —A2 . On the other

hand, for relatively small damping, it is possible to devise a perturba-

tion scheme taking advantage of results obtained for the undamped case.

Before discussing the specific case of slightly damped gyroscopic

systems, we shall present a second—order perturbation theory for

arbitrary real matrices.

4. Second—Order Perturbation Theory for the Algebraic Eigenvalue Problem

Let us consider a 2n x 2n arbitrary real matrix A. The eigenvalue

problem for A is given by Eq. (12) and the adjoint eigenvalue problem is

given by Eq. (15). The two eigenvalue problems are rewritten as

Aui — Ajui 
, i—l,2,...,2n (31a)

TA — A~v1 , 11 ,2,... ,2n (31b)

where A1 is the ith eigenvalue (the same for both problems) and and

are eigenvectors of A and AT , respectively . As mentioned in Sec . 2 ,

and Yj  are called right and left elgenvectors of A, respectively, and

9
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possess the biorthogonality property. Upon the normalization indicated

by Eqs . (17) and (18), the biorthonormality relations have the explicit

form

— — 2i5~~ , i, j 1,2 , . . . ,2n (32a)

— u~ATy~ ~~~ , i,j 1 ,2 ,..., 2n (32b)

It should be pointed out that elgenvalues and eigenvectors satisfying

Eqs. (32) satisfy Eqs. (31) automatically, but the reverse is not neces-

sarily true.

Next, let us assume that the matrix A can be expressed as

A — A 0 +A 1 (33)

where A0 and A1 are known matrices, with the elements of A1 being of one

order of magnitude smaller than the elements of A
0
. In fact, the matrix

A can be regarded as the result of perturb ing the matrix A0 slightly.

Consequently , we shall refer toA 0 as the unperturbed matrix, to A as the

perturbed matrix and to A1 as the perturbation matrix. The eigenvalue

problem associated with A
0 will be identified as the unperturbed elgen—

value problem. Denoting the eigenvalues of A0 by ~~~ the right elgen—

vectors by ~~ and the left eigenvectors by V0j~ anci recognizing that

they all satisfy eigenvalue problems of the type (31) and biorthonormality

relations of the type (32), we can state by analogy the unperturbed

eigenvalue problem

A0U0i — A Oiuøj , 11 ,2,... ,2n (34a)

A~u01 
X0~U , i1 ,2,... ,2n (34b)

and the corresponding biorthonormality relations

if  
_ _ _ _  

10
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T T— — , i,j,—l,2,... ,2n (35a)

uo~
A0uøi 

— u0~A~u0~ 
— 2A 01tS1~ , i,j 1 ,2 ,... ,2n (35b )

Now let us assume that unperturbed eigenvalues A01 and elgenvectors

and 
~01~ 

satisfying Eqs. (34) and (35), are known. Then, our objective

is to produce eigensolutions of the perturbed eigenvalue problem in terms

of the unperturbed eigensolutions and the perturbation matrix A1. To this

end, we seek solutions of the perturbed eigenvalue problem in the form

A1 
— A01 + A u + A21 + ... , 1=1,2,... ,2n (36a)

~Oi 
+ 
~li 

+ 
~2i 

+ i”1,2,...,2n (36b)

— Yol + ~li 
+ 
~2i 

+ •~~~• ~ i=l,2,...,2n (36c)

where the first subscript identifies the order of any particular term.

For example, A1~ is of order one, and hence is one order of magnitude

smaller than A01 and one order of magnitude larger than A21. Similarly,

~2i 
is of order two, and hence is one order of magnitude smaller than

!lj and two orders of magnitude smaller than v~~. We note that the expan-

sions (36) are not finite. Hence, if all terms in these expansions are

determined, these expansions must converge to the elgensolutions of the

perturbed eigenvalue problem. Because we shall determine and use only a

S finite number of terms, the resulting truncated expansions will provide

approximate eigensolutions , which must tend to the unperturbed eigen—

solutions as A1 tends to zero. Furthermore, as A1 tends to zero the terms

in any one of Eqs. (36) must maintain the same order of magnitude in

relation to each other. For~ example, we cannot have the situation where

~2i 
tends to zero as A1 and tends to zero as 4.

-

~ 11

~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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The question arises as to what equations one should use to determine

the perturbations to the eigenva].ues and eigenvectors. Lancaster (Ref.

4 ) ,  Franklin (Ref. 5) and Wilkinson (Ref. 6) present derivations in. which

Eqs. (31) are utilized. Franklin carries the derivation only through

first order , while Lancaster and Wilkinson pursue the manipulations

through second order. Wilkinson points Out that normalization, as in

Eqs. (32), is lost and that the perturbed elgenvectors must be renorma—

lized (Ref . 6 , Sec. 2.7) . To avoid this difficulty, it is suggested in

this paper that Eqs. (32) be used to determine the perturbations to the

unperturbed elgensolutions. As mentioned previously, Eqs. (32) imply not

only normalization but also satisfaction of the perturbed eigenvalue

problem, Eqs. (31).

Substituting Eqs. (33) and (36) into Eqs. (32) and separating

-

~ according to order of magnitude, we obtain

0(0): y0~~01

T 
i,j1 ,2,...,2n (37a)

v A u  2A 6
-Oj 0-01 01 ij

T T0(1) : + 
~lj~ Oi

T T T i ,j 1 ,2 ,. .. ,2n (3m)
v0~A0~11 + y03A1~01 + ~1~A0~01 

— 2A 1161~

T T T0(2) : 
~0j~ 2i + 

~1j~li 
+ 
~
‘2j~0i 

— 0

T T T T i , j , 1,2 , . . . ,2n (37c)
+ v

0~Aiuj i + v1~A0
u11 +

+ v2~A0u01 
— 2A

2~
6~~

As expected , Eqs . (37a) are identical to Eqs. (35). Turning our

attention to Eqs. (3Th) ,  we now wish to determine X 11, UU and

Because U
li 

is a 2n—vecto r in the space L2
~ , and because the vectors

- 

12
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(i”l,2 ,... ,2n) span this space , we can represent as a linear combi-

nation of the u~~ . Hence we write —

2n
— E ejkuOk 

, i—l,2,...,2n (38)
k-I

and we note that the smallness of relative to requires that the

coefficients 6ik be small. Following the same pattern, we represent

as a linear combination of the v01 as

2n
V11 

— E 
~
‘ik~0k 

i”i,2,... ,2n (39)
V k—i

where the coefficients are also small. Substituting Eqs. (38) and

(39) into Eqs. (3Th)  and using Eqs. (37a), we obtain

+ — 0 , i,j l ,2 , . . . ,n (40a)

+ A0~y~~ — ~ v0~A1u~1 + X
11

61~ , i, j 1,2 ,. . . ,2n (40b)

When ~ i~ j, 6~~ — 0, so that, solving for and Yj j~ we obtain

Tv A u

~ j 4 — — 

~~i 
— VA , i,j.tl,2 ,..., 2n ,i,&j (41)

J ‘oi /

Alternat ively , for i — j Eqs. (40) become

~~ + — 0 , i1 ,2,...,2n (42a) V

A0i(ej j  + — — ~ y0~A1~01 
+ A~~ , i1 ,2,...,2n (42b)

Equations (42) yield the first order perturbations to the eigenvalues

A11 
— 

~ vø~A1~0i 
, il ,2,...,2n

Moreover, even though Eqs. (42) do not determine and y.~ uniquely,

these equations are clearly satisfied if we take

-; 
13
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— — 0 , i l ,2 ,... ,2n (44)

I Equations (41), (43) and (44) determine the first—order corrections

I u
~~ 

and v11 fully. The reason for our assumption that the unperturbed

eigeuvalues be distinct is evident from Eqs. (41). It is easy to verify

from Eqs. (41) and (43) that A1~, ~~~~~ and do tend to zero as A1 tends

to zero. V

Let us now consider Eqs. (37c) and obtain the second—order correc-

tions. Proceeding as before, we let

2n
u21 — E €jkUok 

i1,2,... ,2n (45a)
k—i

2n
— E YikVOk 

, i1 ,2,...,2n (45b)
k—i —

where €j k and are second—order quantities. Substituting Eqs. (45)

into Eqs. (37c), and using the biorthonormality of the unperturbed elgen—

solutions, Eqs. (37a), we obtain

2n -
+ E e1~y k + ~ — 0 , i,j l ,2 ,...,2n (46a)
k—l

A
0jëij + 

~ 
Z€ jkvO~

AluOk + 
1
YOke1kY~k 

+ 
~ ~~

YjkYO~
A
iYOj

+A  — A  6Oi j i 2i ij , i,j 1,2 ,...,2n (46b )

Using Eqs. (40), Eqs. (46) can be reduced to

- - 
2n

€ 4 4  + — E e4~e~4 , i,j—1,2,...,2n (47a)
‘ ~ k—i

+ A01y~1 
= (A11 — A

1~)e1~ +

2n
+ E (A~~ + A0 — Aok)€ikek 

, i j l ,2,...,2n (47b)
k-i

14 
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~~ 

— 0, so that Eqs. (47) can be solved for and

with the result

~ r 2n
€ — I(A —A )e + E (A —A )e eif A0~ —A~~ [ if ii. ~i k—i Ok Of ik kj

i,j—1 ,2 ,... ,2n (48a)

I 2n
— ~ ‘(A -A )e + E(A —A )e e

~ A~~—A 0~ L ~ ~ k—l 01 Ok 1k kj

i,jl,2,... ,2n (48b)

When i — j, Eqs . (47) become

2n
+ — Z € ik€k i,j 1 ,2 ,...,2n (49a)

k—i

+ — A21 + ~~(2A 0~ 
— AOk)elkeki ‘

i,j i ,2 ,... ,2n (49b)

Solving Eqs. (49) for A21, we obtain

2n
• A

2~ 
— E (A 

k 
— A i)e

ikeki i1,2 ,..., 2n (50)
4 

k-i 0 0

Although Eqs. (49) do not determine and 
~il 

uniquely, the equations

are satisfied if we take

~ii — — j  E C ikeki , il ,2 ,... ,2n (51)

Equations (48), (50) and (51) determine the second—order corrections,

A2i, ~2i 
and 

~2i 
fully. Recalling that A

1~, ~~ end are proportional

to A1, we conclude that A21, u2~ and are proportional to 4, as
anticipated.

15
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V 5. Slightly Damped Gyroscopic (or Nongyroscopic) Systems

The second—order perturbation solution derived in the preceding

section is quite general and the only restriction is that the matrix A

be real. In the case of slightly damped gyroscopic (or nongyroscopic)

systems, the matrix C can be regarded as being of one order of magnitude

smaller than matrices G and K. Hence, recalling Eqs. (3b), (8), and (33),

we can write

A
0 

— L_1[ f.~ JL
_T 

(52a)

A1 
— — L_1{~_t_gJCT (52b)

One should note that the matrix L can be partitioned, allowing a reduction

in computational effort. Indeed, from Eqs. (3a) and (5), we can write

1L1 1 0 1
L — I~—-+ rI (53) V

L 2 i

where N — L1L~ and K — L
2L~. Hence, Eqs. (52) can now be written as 

V

V L ‘GL —T L1~~L2 

V

A0 
— — J — — + — — (54a)

V 
—L2 L1 0

IL 1CL _ T I  
o

A — — J-J ———— L_~’-— ( 54b )1 L 0 , 0

Note that L1
1L2 is a lower triangular matrix, so that A0 is banded

The symmetry and skew—symmetry of A1 and ~~ respectively, is readily

apparent. Because matrix A1 is of one oróV -’r of magnitude smaller than

the developments o~ the preceding section are readily applicable.

In fact, because matrix A0 is skew symmetric, the unperturbed elgeneolutions

of Sec. 4 are in reality the eigenaolutions of the undamped gyroscopic

system discussed in Sec. 3. Recalling the results of Sec. 4, we anticipate

VV

~

V

~ 
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V 
products of the form y0

TA1u0. Because only the first n rows and columns

V 

of the 2n X 2n matrix A1 are nonzero, we need use only the upper halves of

vectors and

Let us introduce primed subscripts where a prime indicates that the

subscript in queation has been increased by n. For example, j’ j + a,

j — 1,2 ,...,n. Using this notation we have, from Eqs. (28), the pairings

A
01 

— iu~~ , , — , i1,2,...,n 
V

(55)
A — iw u u v — v  — uDi’ 01 ‘ -01’ ‘-Di ‘ -01’ -Di -Oi

i’1,2 ,... ,n

The first—order perturbation solution is obtained by introducing

— 
~~~~~~ 

I — i,2,...,2n into Eqs. (41) and (43). The first—order

eigenvalue perturbation is

A
u 

— ~ i~0~A1~01 , i’l,2,...,2n (56) 
V

V where u~~. Because A1 is real and symmetric, all A11 are real.

Furthermore, assuming that the matrix C is positive semidefinite, A1 is 
V

negative semidef inite and hence the A
1~ 

are nonpositive. Moreover, due

to the real syimnetric nature of the matrix A1, we can restate Eqs. (56)

as

1 HA11 
— A11, — j~ 

u0jA1uoi , il ,2,...,n

which is to say that the first order perturbations to A0~ and A01, 
—

are the same. These familiar results are reassuring.

The coefficients elk in the expansion (38) for are

~ 
RA ~

~ik 
— , i,k-1,2,...,2n, I # k (58)

01 Ok
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Recalling the syimnetry of A~ and the imaginary nature of the A
0
’s, one

can show that

V 

elk 
— , i,k-l,2,...,2n (59a)

€i,kt — , i,k-l,2 ,...,n (59b)

Cik. — el,k , i,k-l,2,...,n (59c)

Thus if we regard the 2n X 2n array of €‘e as partitioned into four n X n

arrays, we need calculate only the upper triangular elements in the two

upper n x n arrays. Furthermore, from Eqs. (58), we note that elk and

elk, are related by the common vector A
f~I0~. Let us write Eqs. (38) V

as
U 

V

— S (e~~u~~ + €ik,uok) , i 1 ,2,...,n (60a)
k—l V

Then, we can show that

U
11.

, — , 1.1,2 ,... ,n (60b)

V and, from Eqs. (39), (41) and (59a), that

V 

~li 
— — 

•

~1i 
‘ i”l ,2 ,.. . ,2n (61)

Next, let us denote the unperturbed eigenvectors as foilows: V

— + i~~ , u~1, — — ~~~ i—1,2,....,n (62)

• and note at this point that the normalization yOj.~
1
~~ — — 2 can be

realized by setting

T T V
— 1 , i1 ,2,...,n (63)

Inserting Eqs. (62) into Eqs. (43), we obtain
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A 
— 
1 A1 

— ~ [~0~
A1y0j + z0~A1~0jJ , 1l ,2 ...,n (64)

1~i’ -01’ -01’

Because the matrix A1 is negative semidefinite, Eqs. (64) confirm that

all first—order perturbations to the eigenvaluee are real and nonpositive.

Moreover, inserting Eqs. (62) into Eqs. (58), we can write for I ‘~ k

I T  T 1 I T  T

€ — 
[~OkA l~Oi ~OkAl~OiJ — 

11
~Ok~’l~Oi 

+ 
~0k

Al~0i
1k 2(woi 

— WOk)

1< 1 , k < n  (65a)

— 1~o~Ai~oi + ~o~i!oil — 
I[Y0~A1Y0j — 

Z
O~ A

1
Z

0jJ
1k 2(W01 + Wok)

V i  < I < a , a + I < k < 2n (65b)

I T  T 1 I T  T 1

e — 
ROk Al~Oi + ~OkAl~OiI + iL~Ok

Al~Oi — ~Ok
Al~OiI

1k 2(w 0~ + W Ok)

1 < k < n , n + l~~~i~~~2n (65c)

I T  T 1 I T
€ — 

1?ok A i~oi — ~OkAl~OiJ 
+ iL~okAl~Oi + 

~OkA l~Oi
1k 2(w 01 — wok)

V n + l < i, k< 2 n  (65d)

Introducing Eqs. (62) and (65) Into Eqs. (38), we obtain

SI.

— 

ii 
f~~~

A1z0~ 
— z

0~A1~0j} 
— 
if~0~Al~01 + z0~A1z0j) +

- k-i 01 Ok
k#i

V I T  T 1 I T  T
~ZOkA l!Oi + ~OkA l~Oij uI~OkA iZOi ~OkA ]~Oi I )2(w01 + wok) ZOk !Ok

11,2,... ,n (66a)
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4 

-

— 

~~~ ~ 11,2,...,n (66b)

The second—order perturbation eigensolutions are obtained from Eqs.

V (48), (50) and (51). From Eqs. (50), (55) and (59a), we can write

— IZ [(wok 
— wOl)e~k

iIk — (WOk + woi)eiktiikf]

i”l,2,...,n (67a)

A21, 
— A21 

, il ,2,...,n (6Th)

It should be evident from Eqs. (62) that A2~ 
(I — l,2,...,2n) is Imaglna”y. 

V

From Eqs . (51) and (59) we can write V

— 
~~~~~~ 

— + ~~~~~~~ , i—l ,2,...,n (68a)

j
~,1, 

— ~~~~~ — , i1,2,...,n (68b)

We note that and (I — i,2,...,n) are real. Comparing Eqs. (48a)

and (48b), we can show that

— 

~ik 
i,k-i,2,...,2n, I # k (69)

This result , coupled with Eqs. (68) , allows us to state that

€1~ 
— 

~ik 
i,k-l,2,...,2n (70)

and hence that

~2i 
— 

~2i 
i~’l,2,...,2n (71)

Let us now wr ite Eq. (48a) as

V 

elk 
— A Oi~

AOk {~~ lk 
- A l~

)e
~k 

+ E ( (A~~ - A Ok
)e

~~e~~

— (A~~ + AOk)ejmle .k]} 
i,k-l,2,...,2n, I ~ k (72) V
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One can now show that

Cik 
, i,k-1,2,...,n (73a)

V 

elk. — eI,k , i,k—l,2,..., (73b)

From Eqs . (47a) and (70), we can write, In analogy with Eqs. (59a) V

~ki 
- - + 

~~~~~~~~~~ 
+ e

~~
,em,i)

I,k-i,2,...,2n, I ~ k (73c)

V Once again, if we regard the Zn x 2n array of c ’s as partitioned into

four a x a arrays, we need calculate only the upper triangular elements

in the upper two n X a arrays. Use of Eqs. (73) allow us to fill in the

remaining elements. Let us write Eqs. (45a) as

V a - —

U — S (e u + e ,u ,) , i 1,2 ,... ,2n (74)

Bearing in mind that UOk? — 

~Ok’ 
Eqs. (73a), (73b) and (74) allow us to

state that

V ~2i’ ~2i 
‘ i1 ,2,...,n (75)

It may be convenient to exhibit the real and imaginary parts of the

second—order perturbations explicitly. To this end, let us write

. 

elk 
— €Rik + ie11~ 

, i,k-l,2,...,2n (76)

where subscripts R and I denote the respective real and imaginary parts

of €~~~. Substitution of Eqs. (76) into Eqs. (67) yields

A21 
- I z {(wOk w

Oi) [€~ + Clik) + [WOk — woj J [e~k~ + 
~Iik’JJ

(77a)
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— — A
2~ 

, i 1,2 ,...,n (7Th)  
—

Substituting Eqs. (76) into Eqs. (68), we obtain

— 
~ ~~~{[€~~j~ + e

~~~) 
+ + e~~~,)] , i—1,2,.. . ,n (78a)

— 

~ii 
, i”l,2 ,.- .. ,n (78b)

Using Eqs. (76), Eqs. (72) can be expressed as 
V

— 
— WOk 

{(Alk 
— A11) (elik 

— leRIk
)

+ E ((w~~ - wok) (eR~~
eR~~ 

— eI~~
e
~~k
) 

V

- (w~~ + Wok) (e Lm,eRm ,k — elim,elm.k)]

+ iS ((w~~ — wok) (e~~m
eI k +

— (w~~ + wOk) (eR~~
,e
~~

,k + eIim.e~~~k)1}

l,k-l,2,...,2n, I # k (79) —

Let us write

V 

C — + iCtik 
, i,k-i,2,...,2n (80)

where and 
~I1k 

are the respective real and Imaginary parts of Cik 
-

4 Equations (80) and (62) allow us to write Eqs. (45a) as -

~2i 
— E [(e

Rik + eR~k,)~ Ok + (•. eIIk + eIIk,)Z Ok

+ 
~~
1Iik + 1Ilk’~~Ok 

+ 1
~~RIk 

— eRik ,)Z Ok l 
-

~

- 1—1,2,... ,n (81a) 

_~~~~ __ _ _ ~~~~~
_ - - ~~~~~~~ ~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ VV - - V V~ V ~V ~~V - ~~~~~~~~~~~ _ V_V V V V V~ ~~~~~~~~~~~~~~~~~~



____ -

-

~2i’ ~2i 
i’l,2,...,n 

V 

(8lb)

which completes the second—order perturbation solution.

It should be observed from the above that all the quantities needed

for the evaluation of the first— and second—order perturbations are

computed by means of the eigenvalues and eigenvectors of the unperturbed

system, i.e., those of the undamped gyroscoplc (or nongyroscopic) system.

6. System Response Based on the Second—Order Perturbation Eigensolutlon

In Sec. 2, we obtained the equations

z1(t) — e~itzj(O) + f e
)
~~

t_
~~Zli(t)dT 

, 11 ,2,... ,2n (82)

It will prove convenient to express Eqs. (82) in terms of the state vector

and the associated excitation vector. From the results of Sec. 2, we can

write

1 T ~Iq(O)lz1(0) — -
~~ y1

L L~5~J i 1,2 ,...,2n (83)

1 T 11Q(t)1 V
Z1~

(t) — ~ v1L L 1  i1 ,2,... ,2n (84)

Equations (82) can now be written as

• z~(t) — eA1t -~~~ V~LT[~~~
J 
+ f ~ e~~~~~~ f y~L_1[~~~Jdt

(85) V

which permits us to write the state vector
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- t T 2~ 
u1z1(t) - f L~~ 

2~ 
~eA1tu v TLT ~~(~(t)J i—i -i Lg(o)

+ f e~1
t_t)

ujv~C~ [____Jdt} (86)

From Eq. (36a), we have

— A
01 + A11. + A21 + ... , i1 ,2,... ,2n (87)

In Sec. 5, we noted that and A 21 are imaginary quantities, while

is real and negative Furthermore, we noted that

A01, — — — A01 , i1 ,2,...,n

A11, 
— A11 , i1 ,2,...,n (88)

A21, — A21 
— — 

~2i 
il ,2,... ,n

where the meaning of a primed subscript was indicated in the previous

section. In view of this, let us express Eqs. (87) as

A
i 

— — — IWdi 
, 1i ,2 ,...,n

— (89)
Ai, — A1 

— — + IWdi 
,

where

— — A11 , i 1 ,2,...,n

- (90)
iLddi — A0~ 

+ A21 ,

and we note that the Wdi represent frequencies of damped oscillation.

From Eqs. (36b), we have

~Oi 
+ 
~1i 

+ 
~2I 

i 1 ,2,... ,2n (91)

where we have shown that

~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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— 

~oi i1,2,...,n

i”1,2,...,n (92)

~2i’ 
— 

~
‘2i i—1,2,... ,n

Hence, we can state that

— , 11,2,...,n (93)

Furthermore, let us write

2n
— S EjkuOk 

, 1—1,2,... ,2n (94)
k-i

where

Elk — 6ik + e~k 
+ Cik + ... , i,k=l ,2 ,.. . ,2n (95)

From Eqs. (36c) , or

— 

~Oi 
+ 
~ii 

+ 
~2i 

+ i 1,2 ,...,2n (96)

we can similarly show that

— v
i 

, i”l,2,...,n (97)

and we can write

2n
— S , 1l ,2,... ,2n (98)
k-i

-k where

- ‘
~ik 

— elk + Cik 
+ ... , i,k-i,2,... ,2n (99)

Let us now reconsider Eq. (86). From Eqs. (89), (93) and (97) we

conclude that the i’th term is the complex conjugate of the ith term,

for every I and i’. Hence, we can rewrite Eq. (86) as

V 25
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CTRe E (e~~
tu vTLT[~.~~.

~~~~ Lg(O)

+ f e
tT )

ujv~L_1[~ .~~jdT} 
(100)

From Eqs . (89) , we can write

eXit — e
_ ’
~
t(cos wdit — i sin wdlt) 

, 11 ,2,... ,n (101)

and from Eqs. (94) and (98), we have

2n 2n _ T
= S E~~u0~ 

S G~~u~~ , i1 ,2,... ,2n (102)
k—i ni—i

so that, using Eqs. (62), we can express Eqs . (102) as

4 

~i’-i 
— 

k,~~l
[
~~~~

0k + i
~OkJ 

+ EikI~Ok 
- i

~OkJJ

• [
~

[
~ 

- + 
~ im’ 

[
~ 

+ i~ J]
i1 ,2,... ,2n (103)

Bearing in mind that the coefficients Elk and are complex quantities,

we can write

— + iI~ , i 1,2 , . .., 2n (104)

where the Zn X 2n matrices R~ and I~ are the respective real and
V imaginary parts of the 2n x 2n matrix ~~~~~~ Introducing Eqs . (101) and

(104) into Eq. (100), we obtain
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1~~
— t 

V 

T I~~
0)

e cos w t R L  ———R(t) 1 —T a di I 
Lq~o’1.~i! = L 

~~ + e~~~
t W~1t 1~t

T [~(o)

~q(o)

+ f ~ e~~ i~
t_t)

cos wdi (t
~

t)RjL 
[
~~~.Jdr 

V

+ e 
i(t_t)

sin w
di
(t_t)I

i
L 
[
~~__JdT} 

(105)

which expresses the response in terms or real quantities alone.

Note that the above formulation remains valid in the case of non—

gyroscopic systems, G — 0.

7. Numerical Examples

Consider the two—degree of freedom , damped gyroscopic system of

Ref. 1 (shown here in Fig. 1). The equations of motion can be written

in matrix form as

M~j(t) + (G + C)~i(t) + Kq(t) — Q(t) (106)

where

In’ 0 lo —2mQ
M — J  ; G~~~• LO m L2m~ 0

4 (107)
Ic 0 Ik—m~

2 0
- ‘  I i iC — I ; K j

Lo 0 L 0 k
2
—m (~

2

Let us take m — 1kg, ~ — irad s~~, c — 0.1kg s~~, k1 — 3kg s 2, k2 —

4kg ~.2 , and note that k1,k2 and ~2 have been picked such that matrix

K is positive definite. From Eqs. (3) we form the matrices M* and K*

27 
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V

•
1 0 0  0

1m b  0 1 1 0  0
I—h- = --—-h-----
L 0 ’ k  0 0 2  0

P 0 1 0  4

(108)
V 

K* E {!!4~~~~ 

V

Tue Cholesky decomposition matrix L, and its inverse, is

1 0 0 0 1 0 0 0

0 1  0 0  0 1  0 0
L — —— ——— ——— , L — -————— ——————— - (109)

o o /~~ 0 0 0 l//~ 0 V

V p o 0 2 0 0 0 1/2 
V

where we recall the partitioned nature of matrix L. Following Eqs . (8)

V 

and (33) we can now form the matrices A
0 

and A
1

0 2 I_/ i
G i~] —T —2 0 0 —2

A0 —L I-H——IL - — —1-—————
L — K ’ O d  /1 0~~~~ 0 0

0 2 ’ O  0

(110)

0.1 0 0 0

~L~~[4~~JL
T 

-

P l O  0 0
,
0 0

, o o 1 o 0
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Computations of the perturbations to the undamped eigensolutions

proceeds as indicated previously. The results are sumsarized in Table 1.

One should note that the system eigenvalues and associated sigenvectors

t occur in complex conjugate pairs. Hence, we include only half of them.

Furthermore, we include only the right eigenvectors.

Inspection of Table 1 reveals the quality of the convergence. It

is also interesting to inspect convergence via a biorthonormailty check

of the perturbed eigenvectors. In Table 2, we present the matrix

I v~u . Numerical values within parentheses represent products

+ [!o~ + + ~2~) [u0j + Uli + , i,j1,2,... ,2n (illa)

while values not within parentheses represent products

~ (~o~ 
+ 
~~ (~~i 

+ ‘ 
i,j— 1,2 ,... ,2n (ilib)

The response to excitation in the form of the Dirac delta function,

with impulse equal. to 1 kgms~~ has been computed. Figure 2 represents a

plot of the coordinate y(t) versus t due to an excitation applied in the
V 

y—direction The two curves represent the response obtained by the gen—

eral theory and the 0(0) response. Within the accuracy of this plot , the

0(0) + 0(1) and 0(0) + 0(1) + 0(2) responses are identical to that obtained

by the general theory.

As another example, let us consider the slightly damped noczgyroscopic

system depicted in Fig. 3. The equations of motion considered are

t4ij (t ) + C~(t) + Kq(t ) — Q(t) (112)
V where
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V Vj

I
Ii °1 10 . 4  —0.2 r 5 —4 1

V N — I  , C — ~~ , K — ~ (113)
LO 2j L—0 2 0.2 L—4 4J

Matrices A0 and A1 are

o - / ~

0 o ir~ —io~A - _. V

° ~~~~~
•

o ~~~~~~~~~~~ 0 0
(114)

—0.4 /0.02 0 0

/0.02 —0.1 0 0 

1 0 0 0 0

~~o 0 0 0

Summaries of the exact and perturbed eigensolutions are given in Table 3

V and a biorthonormality check is given in Table 4. The quantities displayed

in this table have the same meaning as those in Table 2. The response of the

system to an excitation in the form F1(t) — 0, P2(t) — 45(t) is presented

in Fig. 4. As in Fig. 2, the response obtained by the general theory and

the 0(0) + 0(1) and 0(0) + 0(1) + 0(2) responses are all given by one

curve, whereas the 0(0) response by the other curve.
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8. St~~~ary and Conclusions 
-

V A second—order perturbation analysis was developed for the

algebraic eigenvalue problem

(A.~ + A1
)u i — X

iui 
, im1,2 ,...,2n

where matrices A0 and A1 are real and where A1 is one order of magnitude

smaller than A0. The az~a1ysis was based upon knowledge of the eigen—

solutions when A1 is the null matrix. The perturbation theory was applied

to slightly damped gyroscopic systems. In this case, A0 is skew

symmetric and A1 is symmetric, so that special computational advantages

can be realized. Note also that the nongyroscopic systems can be handled

within the context of the same general formulation by simply letting

C; — o.
As an example, a two—degree of freedom slightly damped gyroscopic

system was analyzed. As another example, a nongyroscopic system has been

treated . Even for relatively large damping, the perturbation results for

both cases agree well with the solutions obtained by algorithms for

general matrices. Because the present formulation is based on the eigen—

solution for real syimnetric matrices, it should prove far superior for

high—order systems. 
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